Teorema Nilai Rata-Rata

Ketaksamaan Bernoulli

Salah satu ketaksamaan penting dalam matematika adalah ketaksamaan Bernoulli: jika p ≥ 1, maka

(1 + a)p ≥ 1 + pa,

untuk setiap a > -1.

Untuk a = 0, ketaksamaan jelas berlaku. Selanjutnya misalkan a > 0. Dalam hal ini ketaksamaan di atas setara dengan

Untuk membuktikannya, tinjau fungsi f(x) = (1 + x)p, x ≥ 0. Ketaksamaan di atas berbunyi

Karena f kontinu dan mempunyai turunan pada (0, ∞), menurut Teorema Nilai Rerata untuk turunan, terdapat c di antara 0 dan a sedemikian sehingga

Tetapi

f’(c) = p(1 + c)p – 1p(1 + c)0 = p

mengingat 1 + c > 1. Jadi ketaksamaan terbukti untuk a > 0. Selanjutnya, untuk -1 < a < 0, ketaksamaan Bernoulli setara dengan

Dengan cara serupa seperti di atas, dan mengingat 0 < 1 + c < 1, kita mempunyai

f’(c) = p(1 + c)p – 1p(1 + c)0 = p.

Jadi ketaksamaan pun terbukti untuk -1 < a < 0.

Nah, dengan ketaksamaan Bernoulli, Anda dapat membuktikan perbandingan bunga majemuk yang diminta minggu lalu.

O ya, barangkali ada yang belum tahu, ada tiga matematikawan asal Swiss yang memiliki nama belakang Bernoulli, yaitu Jacob Bernoulli, Johann Bernoulli, dan Daniel Bernoulli. Jacob dan Johann adalah kakak dan adik. Daniel adalah anak dari Johann. Nah, siapakah di antara mereka yang namanya disematkan pada ketaksamaan di atas?

*

Bandung, 19-09-2017

Advertisements

Teorema Rolle dan Teorema Nilai Rata-Rata untuk Turunan

Misalkan f adalah fungsi yang kontinu pada interval [a, b] dan mempunyai turunan pada interval (a, b). Jika f(a) = f(b), maka terdapat suatu c ∈ (a, b) sedemikian sehingga f‘(c) = 0. Fakta ini dibuktikan pertama kali untuk fungsi polinom oleh Michel Rolle (1652-1719), karena itu diberi nama Teorema Rolle.

Bukti Teorema Rolle untuk fungsi f sembarang diberikan oleh Augustin-Louis Cauchy (1789-1857). Argumentasinya kira-kira sebagai berikut. Ingat jika f kontinu pada interval [a, b] yang kompak, maka menurut sifat kekontinuan f akan mencapai nilai maksimum M di suatu titik c1 ∈ [a, b] dan f juga mencapai nilai minimum m di suatu titik c2 ∈ [a, b]. Jika c1 dan c2 adalah titik-titik ujung interval [a, b], hipotesis f(a) = f(b) memaksa m = M, dan dalam hal ini f mestilah konstan pada [a, b]. Akibatnya f‘(c) = 0 untuk setiap c ∈ (a, b). Jika c1 bukan titik ujung [a, b], maka cdi (a, b) dan f mencapai nilai maksimum lokal di c1. Ini hanya dapat terjadi ketika f‘(c1) = 0. Hal serupa terjadi bila c2 bukan titik ujung [a, b]. Jadi, dalam kasus manapun, mestilah terdapat c di (a, b) sedemikian sehingga f’(c) = 0. Sebagai ilustrasi, lihat gambar di bawah ini.

teorema_rolle

Sebagai perumuman dari Teorema Rolle, kita mempunyai Teorema Nilai Rata-Rata, yang berbunyi: Jika f kontinu pada [a, b] dan mempunyai turunan pada (a, b), maka terdapat c ∈ (a, b) sedemikian sehingga f‘(c) = [f(b) – f(a)]/(ba). Nilai [f(b) – f(a)]/(ba) disebut nilai rata-rata f pada [a, b]. Nilai ini sama dengan gradien ruas garis singgung yang menghubungkan titik (a, f(a)) dan (b, f(b)). Teorema Nilai Rata-rata menyatakan bahwa pada kurva y = f(x) terdapat suatu titik (c, f(c)) dengan gradien garis singgung sama dengan nilai rata-rata f pada [a, b]. Secara fisis, jika y = f(t) menyatakan posisi suatu partikel yang bergerak (sepanjang garis lurus) pada saat t, maka f‘(t) menyatakan kecepatan sesaat partikel pada saat t dan [f(b) – f(a)]/(ba) menyatakan kecepatan rata-rata partikel tersebut pada interval waktu [a, b]. Teorema Nilai Rata-Rata menyatakan bahwa partikel tersebut akan mencapai kecepatan rata-ratanya pada suatu saat c di (a, b).

Teorema Nilai Rata-Rata dapat dibuktikan dengan meninjau fungsi F yang didefinisikan pada interval [a, b] sebagai F(x) = f(x) – hx dengan h = [f(b) – f(a)]/(ba). Dalam hal ini, F kontinu pada [a, b] dan mempunyai turunan pada (a, b). Periksa juga bahwa F(a) = F(b), sehingga F memenuhi hipotesis Teorema Rolle. Karena itu, mestilah terdapat suatu titik c ∈ (a, b) sedemikian sehingga F‘(c) = 0. Karena F’(c) = f’(c) – h, kita peroleh f’(c) = h = [f(b) – f(a)]/(ba).

Sebagaimana telah diungkap dalam artikel sebelumnya, Teorema Nilai Rata-Rata diperlukan dalam pembuktian Teorema Dasar Kalkulus II.

*

Bandung, 02-05-2017

Teorema Dasar Kalkulus II

Dari Teorema Dasar Kalkulus I (TDK I) dapat diperoleh Teorema Dasar Kalkulus II (TDK II) yang berbunyi: Jika f kontinu dan mempunyai anti-turunan F [yang memenuhi F’(x) = f(x)] pada interval [a, b], maka

Teorema Dasar Kalkulus II

Buktinya adalah sebagai berikut. TDK I telah memberi tahu kita bahwa

anti-turunan

merupakan anti-turunan dari f(x) pada [a, b], yakni G’(x) = f(x) untuk setiap x ∈ [a, b]. Akibatnya, kita mempunyai G’(x) − F’(x) = 0 untuk setiap x ∈ [a, b]. Menurut Teorema Nilai Rata-Rata (untuk turunan), hal tersebut hanya mungkin terjadi apabila G(x) − F(x) = C (konstan) untuk setiap x ∈ [a, b]. Jadi, kita peroleh

Teorema Dasar Kalkulus II - b

untuk setiap x ∈ [a, b]. Dengan mensubstitusikan x = a, kita mempunyai F(a) + C = 0 (karena integral pada [a, a] mestilah sama dengan 0). Jadi C = −F(a), dan kesamaan di atas menjadi

Terorema Dasar Kalkulus II - c

untuk setiap x ∈ [a, b]. Khususnya, untuk x = b, kita peroleh

Teorema Dasar Kalkulus II

Catatan: Teorema Nilai Rata-Rata untuk turunan menyatakan jika f kontinu pada [a, b] dan mempunyai turunan pada (a, b), maka terdapat c ∈ (a, b) sedemikian sehingga f’(c) = [f(b) – f(a)]/(ba).

*

Bandung, 28-04-2017