Problem

Yang ditayangkan di sini merupakan problem-problem yang (menurut saya) menarik, khususnya bagi siswa SMA kelas XI-XII dan mahasiswa tahun pertama atau kedua; sebagian mungkin relatif mudah, sebagian lainnya sulit.

Fungsi Monoton Sejati dan Inversnya

Fungsi f dikatakan naik sejati pada I apabila untuk setiap x, y ∈ I dengan x < y berlaku f(x) < f(y). Fungsi f dikatakan turun sejati pada I apabila untuk setiap x, y ∈ I dengan x < y berlaku f(x) > f(y). Fungsi naik sejati atau turun sejati pada I disebut fungsi monoton sejati pada I.

Fungsi monoton sejati merupakan fungsi satu-ke-satu, dan karenanya ia akan mempunyai invers.

Buktikan jika f naik sejati pada I dan J = {f(x) : xI}, maka invers dari f naik sejati pada J. (Serupa dengan itu, jika f turun sejati pada I dan J = {f(x) : xI}, maka invers dari f turun sejati pada J.)

*

Bandung, 06-06-2017

Fungsi Monoton yang Tak Kontinu di Setiap Bilangan Rasional

Misalkan Q = {rk : k ∈ N} menyatakan himpunan semua bilangan rasional. Definisikan fungsi f : R → R dengan rumus

Buktikan bahwa:

(a) f monoton naik.

(b) f tak kontinu di setiap bilangan rasional.

(c) f kontinu di setiap bilangan irasional.

Catatan: Walau f mempunyai rumus yang cukup gamblang, kita tidak dapat menggambar grafik fungsinya.

*

Bandung, 02-06-2017

Ketakkontinuan Fungsi Monoton

Ambil sebuah fungsi f yang monoton pada [a, b], seberapa burukkah fungsi f yang kita ambil tersebut? Fungsi f yang kita ambil tadi mungkin tidak kontinu di sejumlah titik. Pertanyaannya: paling banyak berapa titik? Jawabannya: bisa tak terhingga, tapi pasti terhitung (countable). Begini argumentasinya.

Berdasarkan penjelasan pada artikel sebelumnya, ketakkontinuan yang mungkin terjadi pada f hanya ketakkontinuan loncat. Tanpa mengurangi keumuman, asumsikan f monoton naik. Nah, sekarang, sambil membayangkan grafik fungsi f, kita dapat menyimpulkan bahwa terdapat paling banyak 1 titik pada [a, b], sebutlah d1, di mana f tidak kontinu dengan loncatan sebesar h1 dengan [f(b) – f(a)]/2 < h1 ≤ f(b) – f(a). Kemudian, terdapat paling banyak 2 titik pada [a, b], sebutlah d21 dan d22, di mana f tidak kontinu dengan loncatan sebesar h2 dengan [f(b) – f(a)]/3 < h2 ≤ [f(b) – f(a)]/2. Secara umum, terdapat paling banyak n titik pada [a, b], sebutlah dn1, …, dnn, di mana f tidak kontinu dengan loncatan sebesar hn dengan [f(b) – f(a)]/(n+1) < hn ≤ [f(b) – f(a)]/n, untuk n = 1, 2, 3, … . Nah, himpunan titik-titik di mana f mungkin tidak kontinu, yaitu {d1, d21, d22, d31, d32, d33, …}, merupakan himpunan terhitung. Begitulah argumentasinya.

Sekarang ada problem untuk Anda: Konstruksilah sebuah fungsi monoton pada [0, 1] yang tidak kontinu pada suatu himpunan terbilang (yakni, terhitung tapi tak terhingga).

*

Bandung, 30-05-2017

Fungsi yang Kontinu Hanya di Satu Titik

Apakah Anda bisa membayangkan sebuah fungsi yang kontinu hanya di satu titik, katakan di c = 0, dan tidak kontinu di titik lainnya?

Sebagai contoh, tinjau fungsi f : R → R yang didefinisikan sebagai f(x) = x jika x rasional dan f(x) = –x jika x irasional. Fungsi ini kontinu hanya di c = 0, tidak di titik lainnya. Sila buat sketsa grafik fungsi ini!

Nah, dengan sedikit modifikasi, Anda juga dapat mengkonstruksi contoh fungsi yang mempunyai turunan hanya di satu titik, dan tidak mempunyai turunan di titik lainnya. Sila coba!

*

Bandung, 12 Mei 2017