Ketaksamaan Hoelder

Pada artikel sebelumnya, saya menggunakan ketaksamaan Hölder untuk membuktikan ketaksamaan mrt. Ketaksamaan Hölder untuk deret berbunyi

ketaksamaan holder_1

untuk sembarang barisan (xi) dan (yi) dan 1 < p, q < ∞ dengan 1/p + 1/q = 1. Ketaksamaan berlaku untuk setiap deret terhingga, dan karenanya ketaksamaan juga berlaku deret tak terhingga, asalkan kedua deret di ruas kanan konvergen.

Berikut adalah buktinya untuk deret terhingga. Pertama, kita periksa bahwa untuk 1 < p, q < ∞ dengan 1/p + 1/q = 1, kita mempunyai (p – 1)q = p dan (p – 1)(q – 1) = 1. Kedua, untuk sembarang bilangan a, b ≥ 0, berlaku ab ≤ (ap)/p + (bq)/q. Ketaksamaan ini dapat dibuktikan dengan menggunakan konsep integral, terkait dengan daerah di kuadran pertama yang berada di bawah kurva y = xp – 1 dan daerah yang berada di sebelah kirinya. Persisnya, perhatikan gambar di bawah ini:

Dengan konsep integral, luas daerah di bawah kurva y = xp – 1 untuk 0 ≤ xa sama dengan L1 = (ap)/p. Sementara itu, dengan menghitung integral dari inversnya, yaitu x = yq – 1 untuk 0 ≤ yb, kita dapatkan luas daerah di sebelah kiri kurva sama dengan L2 = (bq)/q. Nah, bila b = ap – 1, maka L1 + L2 = ab (= luas persegi panjang dengan panjang a dan lebar b). Selain itu, kita peroleh L1 + L2 > ab. Jadi, secara umum, L1 + L2ab.

Sekarang, untuk setiap i, misalkan ai = |xi|/A dan bi = |yi|/B dengan

ketaksamaan holder_3

Maka ∑i aip = 1 dan ∑i biq = 1. Selanjutnya, untuk setiap i, kita mempunyai aibi ≤ (aip)/p + (biq)/q. Akibatnya, bila kita hitung jumlahnya, kita peroleh

Kalikan kedua ruas dengan AB, kita peroleh ketaksamaan Holder. Eureka!

O ya, catat bahwa untuk p = q = 2, kita peroleh ketaksamaan Cauchy-Schwartz, yang sudah pernah kita bahas jauh sebelumnya. Jadi ketaksamaan Cauchy-Schwarz merupakan kasus khusus dari ketaksamaan Hölder.

*

Bandung, 22-08-2017

Advertisements

2 comments

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s