Skip to content
Bermatematika

Bermatematika

Blog Matematika ala Hendra Gunawan

  • Tentang Blog Ini
  • Artikel
  • Problem
  • Riset
  • Paper Matematika
  • Arsip di arXiv
  • Slide Kalkulus DLL
  • Materi Ceramah
  • Video Wawancara & Kuliah Umum
  • H Gunawan’s Blog
  • Bersains
  • Hantu Lingkaran
  • Menuju Tak Terhingga
  • Istilah Matematika
  • TOKO

Tag: tripel Pythagoras

Tripel Pythagoras dan Persamaan Pell

Mencari segitiga dengan alas dan tinggi berselisih 1 sedemikian sehingga alas, tinggi, dan sisi miringnya merupakan tripel Pythagoras sama saja … More

persamaan Pell, persamaan Pell negatif, segitiga tripel Pythagoras, tripel Pythagoras

Segitiga Tripel Pythagoras

Artikel pertama yang saya unggah di blog ini adalah tentang tripel Pythagoras. Tripel bilangan asli a, b, dan c disebut … More

dalil Pythagoras, segitiga sama-kaki, segitiga siku-siku, segitiga tripel Pythagoras, tripel Pythagoras

Batu Bata Euler dan Balok Sempurna*

Suatu Tripel Pythagoras memberikan suatu segitiga siku-siku dengan sisi-sisi bilangan bulat positif atau bilangan asli. Nah, serupa dengan itu, adakah … More

balok sempurna, batu bata Euler, Euler, Euler Brick, Integer Brick Problem, persamaan Diophantine, Problem Balok Sempurna, Problem Batu Bata Bilangan Bulat, tripel Pythagoras

Segitiga Ilahi

(Artikel ini disadur dari buku karangan Clifford A. Pickover, The Loom of God, halaman 74.) Pada tahun 1643, Pierre de … More

Clifford A. Pickover, Marin Mersenne, Pierre de Fermat, segitiga ilahi, segitiga siku-siku, The Loom of God, tripel Pythagoras

Tripel Pecahan Satuan Dasar

Tripel bilangan (5, 4, 3) dan kelipatannya, seperti (10, 8, 6), (15, 12, 9), dan seterusnya, merupakan contoh Tripel Pythagoras. … More

tripel pecahan satuan, tripel pecahan satuan dasar, tripel Pythagoras, unit fraction triples

Tripel Pecahan Satuan dan Tripel Arcus Tangen

Tripel bilangan asli (5, 4, 3) merupakan Tripel Pythagoras; ketiga bilangan tersebut memenuhi persamaan 52 = 42 + 32. Secara umum, untuk m > … More

rumus Euler, tripel arcus tangen, tripel pecahan satuan, tripel Pythagoras

Tripel Pythagoras

Tripel Pythagoras adalah tripel bilangan bulat positif a, b, dan c yang memenuhi persamaan a² + b² = c². Contoh … More

dalil Pythagoras, Pythagoras, tripel Pythagoras

Recent Posts

  • Kanal Youtube Hendra Gunawan
  • Mimpi Saya
  • Ketakterhinggaan dan Tantangan dalam Matematika
  • Math Festival 2020
  • Proposisi Archimedes

Recent Comments

Matematika on Kanal Youtube Hendra Guna…
FE Pramana on Kejadian Saling Lepas dan Keja…
farahaudifarefia on Ruang Bernorma-2
Sandy on Ketakterhinggaan dan Tantangan…
Mengenal Bilangan Er… on Projek Bilangan Erdos

Archives

  • July 2022
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • July 2016
  • June 2016
  • May 2016
  • April 2016

Categories

  • Artikel
  • Problem
  • Riset

Recent Posts

  • Kanal Youtube Hendra Gunawan
  • Mimpi Saya
  • Ketakterhinggaan dan Tantangan dalam Matematika
  • Math Festival 2020
  • Proposisi Archimedes

Recent Comments

Matematika on Kanal Youtube Hendra Guna…
FE Pramana on Kejadian Saling Lepas dan Keja…
farahaudifarefia on Ruang Bernorma-2
Sandy on Ketakterhinggaan dan Tantangan…
Mengenal Bilangan Er… on Projek Bilangan Erdos

Archives

  • July 2022
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • July 2016
  • June 2016
  • May 2016
  • April 2016

Categories

  • Artikel
  • Problem
  • Riset
Website Powered by WordPress.com.
Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
  • Follow Following
    • Bermatematika
    • Join 303 other followers
    • Already have a WordPress.com account? Log in now.
    • Bermatematika
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...