Karl Weierstrass

Turunan dan Kekontinuan – IV

Eksistensi turunan di suatu titik hanya menjamin kekontinuan di titik tersebut, tidak pada suatu interval buka yang memuat titik tersebut. Sekarang bagaimana dengan kebalikannya: jika f kontinu pada suatu interval dengan panjang positif, apakah f akan mempunyai turunan kecuali di sejumlah titik dalam interval tersebut? Sebagai contoh, fungsi tangga Cantor yang grafiknya seperti pada gambar di bawah ini merupakan fungsi yang kontinu pada [0, 1]. Fungsi ini tidak mempunyai turunan di tak terhingga banyak titik, tetapi di titik-titik lainnya ia mempunyai turunan nol. Secara keseluruhan, fungsi tangga Cantor mempunyai turunan ‘hampir di mana-mana’ (yakni, mempunyai turunan kecuali pada suatu himpunan ‘berukuran nol’).

cantor-function

Namun, jangan salah, ada banyak fungsi yang kontinu pada suatu interval buka tetapi tidak mempunyai turunan di satu titik pun dalam interval tersebut. Salah satu contohnya adalah fungsi Weierstrass,

rumus fungsi weierstrass

yang grafiknya seperti di bawah ini:

fungsi weierstrass

Fungsi Weierstrass kontinu di setiap titik tetapi tidak mempunyai turunan di titik manapun. Fungsi ini ‘ditemukan’ dan dipublikasikan oleh Karl Weierstrass pada 18 Juli 1872.

*

Bandung, 21-07-2017

 

Hasil Kali Tak Terhingga untuk Sinc x dan Rumus Wallis untuk Pi

Pada tahun 1730-an, Leonhard Euler (1707-1783) ‘membuktikan’ bahwa

infinite-product-1

untuk setiap bilangan real x. Bagaimana caranya Euler mendapatkan rumus ini?

Bila p(x) adalah polinom berderajarat n yang memiliki n akar r1, r2, …, rn, maka p(x) = C(xr1)(xr2) … (xrn). Bila tidak akar yang bernilai 0, maka kita dapat menuliskannya sebagai p(x) = K(1 – x/r1)(1 – x/r2) … (1 – x/rn), dengan K = p(0). Nah, fungsi sinc x mempunyai tak terhingga akar, yaitu x = ±nπ, dengan n = 1, 2, 3, … , dan sinc 0 = 1. Dengan sedikit ‘iman’, Euler menyimpulkan bahwa

infinite-product-2

Fakta ini dikukuhkan kemudian oleh Karl Weierstrass (1815-1897). Secara umum Weierstrass membuktikan bahwa hal serupa berlaku untuk sembarang fungsi bernilai kompleks yang bersifat entire. (Sebagai fungsi bernilai kompleks, sinc z merupakan fungsi entire.) Hasil ini dikenal sebagai Teorema Faktorisasi Weierstrass, yang dapat dianggap sebagai perumuman dari Teorema Dasar Aljabar.

O ya, perhatikan bahwa bila kita pilih x = π/2, maka rumus di atas memberikan

infinite-product-3

yang tak lain merupakan Rumus Wallis untuk bilangan π.

*

Bandung, 14-02-2017