Fungsi Kontinu – I

Di blog ini, saya pernah memperkenalkan fungsi kontinu di ruang metrik. Misalkan (X, d1) dan (Y, d2) ruang metrik, f : X → Y adalah fungsi dari X ke Y, dan c adalah anggota X. Fungsi f dikatakan kontinu di c apabila semakin dekat x ke c, semakin dekat f(x) ke f(c). Persisnya, f kontinu di c apabila untuk setiap ε > 0 terdapat δ > 0 sedemikian sehingga untuk setiap x ∈ X dengan d1(x, c) < δ berlaku d2(f(x), f(c)) < ε.

Nah, jika X = [a, b] dan Y = R dilengkapi dengan metrik d(x, y) = |x − y|, maka fungsi f : X → Y dikatakan kontinu di c ∈ X apabila untuk setiap ε > 0 terdapat δ > 0 sedemikian sehingga untuk setiap x ∈ X dengan |x − c| < δ berlaku |f(x) − f(c)| < ε. Setara dengan itu, fungsi f kontinu di c ∈ X apabila untuk setiap ε > 0 terdapat δ > 0 sedemikian sehingga untuk setiap x ∈ X ∩ (c − δ, c + δ) berlaku f(x) ∈ (f(c) − ε, f(c) + ε).

Perhatikan jika c = a, maka X ∩ (a − δ, a + δ) = [a, a + δ), sehingga definisi di atas menyatakan bahwa f kontinu di a apabila untuk setiap ε > 0 terdapat δ > 0 cukup kecil sedemikian sehingga untuk setiap x ∈ [aa + δ) berlaku f(x) ∈ (f(a) − ε, f(a) + ε). Serupa dengan itu, jika c = b, definisi di atas menyatakan bahwa f kontinu di b apabila untuk setiap ε > 0 terdapat δ > 0 cukup kecil sedemikian sehingga untuk setiap x ∈ (b − δ, b] berlaku f(x) ∈ (f(b) − ε, f(b) + ε).

Ya, dalam hal X = [a, b], kekontinuan f di a setara dengan kekontinuan kanan di a dan kekontinuan f di b setara dengan kekontinuan kiri di b.

Cerita tentang kekontinuan fungsi di suatu titik akan menjadi seru ketika X merupakan bukan merupakan interval. Salah satu contohnya dapat ditemui dalam artikel sebelumnya. Nah, dalam beberapa artikel yang akan datang, kita akan membahas beberapa contoh fungsi kontinu lainnya, yang mungkin belum pernah Anda jumpai sebelumnya.

*

Bandung, 20-06-2017

Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s