Masih tentang Penaksir ‘Lokasi Pusat’ Data

Anda sudah mengenal rerata dan median dari sejumlah bilangan (atau data) x1, x2, … , xn, yang terurut naik. Lalu ada satu nilai lagi yang sering dipakai sebagai penaksir ‘lokasi pusat’ data selain rerata dan median, yaitu modus – yakni nilai yang paling sering muncul dalam data tersebut. Namun, dari sudut pandang teori ruang bernorma, sebetulnya ada satu nilai yang juga dapat dipakai sebagai penaksir lokasi pusat data, dan nilai ini dapat ditentukan dengan sangat mudah dan cepat, yaitu t = ½·(x1 + xn), yakni rerata aritmetik dari nilai terkecil dan nilai terbesar dari data yang kita miliki. Nilai ini dikenal sebagai ‘nilai tengah’ (mid-range). [Bila selama ini Anda menggunakan istilah ‘nilai tengah’ sebagai padanan untuk median, ke depan Anda perlu meralatnya: median adalah ‘nilai di tengah’, yakni nilai yang dicapai di tengah, bukan ‘nilai tengah’.]

Sebagai contoh, jika di suatu kelompok siswa diketahui tinggi badan terendahnya adalah 154 cm dan tinggi badan tertingginya 178 cm, maka dengan cepat kita dapat memperoleh nilai tengahnya, yaitu 166 cm. Nilai ini dapat kita pakai sebagai penaksir data tinggi badan siswa di kelompok tersebut.

Nah, bila rerata aritmetik meminimumkan galat kuadrat total, nilai tengah meminimumkan apa ya? Sila selidiki!

*

Bandung, 15-08-2017

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s