Fungsi Monoton

Fungsi f dikatakan naik pada [a, b] apabila untuk setiap x, y ∈ [a, b] dengan x < y berlaku f(x) ≤ f(y). Fungsi f dikatakan turun pada [a, b] apabila untuk setiap x, y ∈ [a, b] dengan x < y berlaku f(x) ≥ f(y). Fungsi naik atau turun pada [a, b] disebut fungsi monoton pada [a, b].

Setiap fungsi monoton pada [a, b] mempunyai limit kiri dan limit kanan di setiap titik c ∈ (a, b). Tentunya ia juga akan mempunyai limit kanan di a dan limit kiri di b. Nah, selanjutnya kita gunakan notasi

limit kiri

dan

limit kanan

asalkan kedua limit ini ada. Maka, kita mempunyai fakta berikut:

1. Jika f monoton naik pada [a, b], maka limit kanan di adanlimit kiri di b

Sebagai akibatnya, kita juga mempunyai fakta berikut:

2. Misalkan f monoton naik pada [a, b]. Jika c di (a, b), maka f(c  ̶) dan f(c+) ada, dan

f(x) ≤ f(c  ̶) ≤ f(c) ≤ f(c+) ≤ f(y)

untuk setiap x dan y dengan ax < c < yb.

Fakta terakhir memberi tahu kita bahwa suatu fungsi monoton mungkin tidak kontinu di suatu titik, tetapi ketakkontinuan yang mungkin terjadi hanyalah ketakkontinuan loncat.

Pada artikel berikutnya, kita akan membahas himpunan titik diskontinuitas suatu fungsi monoton.

*

Bandung, 26-05-2017

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s