Titik Ekstrem Lokal dan Titik Stasioner

Misalkan f mempunyai turunan pada interval (a, b) dan c ∈ (a, b). Jika f mencapai nilai maksimum lokal atau nilai minimum lokal di c, maka f‘(c) = 0.

Fakta ini dapat dibuktikan melalui kontraposisinya: Jika f’(c) ≠ 0, maka f tidak akan mencapai nilai maksimum atau minimum lokal di c.

Buktinya adalah sebagai berikut. Menurut definisi turunan,

turunan di c

Nah, misalkan f‘(c) > 0. Maka, menurut definisi limit, terdapat suatu δ > 0 sedemikian sehingga

turunan positif

untuk x ∈ (cδ, c + δ), xc.

Sekarang perhatikan bahwa untuk x ∈ (c, c + δ), kita mempunyai xc > 0 dan ketaksamaan di atas memberikan f(x) – f(c) > 0 atau f(x) > f(c). Jadi f tidak mungkin mencapai nilai maksimum lokal di c. Selanjutnya untuk x ∈ (cδ, c), kita mempunyai xc < 0 dan ketaksamaan memberikan f(x) – f(c) < 0 atau f(x) < f(c). Jadi f juga tidak mungkin mencapai nilai minimum lokal di c.

Hal serupa terjadi ketika f‘(c) < 0. Jadi, jika f‘(c) ≠ 0, maka f tidak akan mencapai nilai maksimum atau minimum lokal di c.

Catatan. Kebalikan dari fakta di atas tidak berlaku: Jika f‘(c) = 0, tidak ada jaminan f mencapai nilai maksimum atau minimum lokal di c. Sebagai contoh, f(x) =x3 mempunyai turunan 0 di c = 0, yakni f’(0) = 0, tetapi f tidak mencapai nilai maksimum ataupun minimum di c = 0. Titik maksimum atau minimum lokal disebut sebagai titik ekstrem lokal, sedangkan titik dengan turunan 0 disebut titik stasioner. Jika f‘(c) ada dan c merupakan titik ekstrem lokal, maka c haruslah merupakan titik stasioner. Tetapi jika c merupakan titik stasioner, c belum tentu merupakan titik esktrem lokal.

*

Bandung, 05-05-2017

Advertisement

1 Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s