Limit Fungsi Sinc x dan Prinsip Apit

Fungsi f(x) = sinc x kontinu di 0 karena ketika x menuju 0, sinc x menuju f(0), yaitu 1. Fakta ini diperoleh dengan bantuan Prinsip Apit, mengingat cos x ≤ sinc x ≤ 1 untuk x di sekitar 0 (lihat gambar), dan cos x menuju 1 bila x menuju 0.

limit-sinc-0

O ya, Prinsip Apit menyatakan jika suatu fungsi diapit oleh dua fungsi lain, dan kedua fungsi pengapitnya memiliki limit yang sama di suatu titik, maka fungsi yang diapit tadi akan memiliki limit yang sama di titik tersebut.

Persisnya, misalkan f(x) ≤ g(x) ≤ h(x) untuk x di sekitar c. Prinsip Apit berbunyi:

prinsip-apit

Nah, pada kasus di atas, f(x) = cos x, g(x) = sinc x, dan h(x) = 1, dengan c = 0 dan L = 1.

Dengan Prinsip Apit pula, kita dapat membuktikan bahwa sinc x menuju 0 bila x menuju tak terhingga, mengingat untuk setiap x > 0 kita mempunyai

sinc-x-terapit

dan 1/x menuju 0 bila x menuju tak terhingga. (Serupa dengan itu, sinc x menuju 0 bila x menuju minus tak terhingga.)

Jadi, dengan Prinsip Apit, kita telah membuktikan

limit-fungsi-sinc

Pengetahuan tentang limit sinc x di 0 dipakai antara lain untuk membuktikan bahwa turunan dari sin x adalah cos x.

*

Bandung, 07-02-2017

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s