Salah satu aksioma Peano menyatakan jika suatu pernyataan benar untuk dan jika kebenaran pernyataan itu untuk
mengakibatkan kebenaran pernyataan untuk
maka pernyataan itu benar untuk setiap bilangan asli
Aksioma Peano tersebut dikenal sebagai Prinsip Induksi Matematika, dan sering dipakai untuk membuktikan kebenaran suatu pernyataan yang terkait dengan bilangan asli.
Berdasarkan prinsip ini, ada dua langkah yang harus kita lakukan untuk membuktikan kebenaran pernyataan untuk setiap bilangan asli
Langkah pertama adalah memeriksa kebenaran
Langkah ini dikenal sebagai langkah dasar atau langkah basis. Langkah kedua adalah memeriksa kebenaran implikasi “jika
benar, maka
benar”. Langkah ini dikenal sebagai langkah induksi.
Jika kita berhasil membuktikan kedua hal tersebut, maka kita dapat menyimpulkan bahwa pernyatan benar untuk setiap bilangan asli
Sebagai contoh, misal kita ingin membuktikan bahwa untuk setiap bilangan asli
Di sini,
adalah pernyataan bahwa
Pertama, kita periksa bahwa Jadi
benar. Selanjutnya, kita harus membuktikan jika
benar, maka
benar. Untuk itu, misalkan
benar, yaitu bahwa
Maka, kita peroleh
yang berarti bahwa benar.
Berdasarkan Prinsip Induksi Matematika, kita simpulkan bahwa benar atau
untuk setiap bilangan asli
Catatan. Kebenaran pernyataan di atas dapat dibuktikan dengan cara lain. Pembuktian dengan Prinsip Induksi Matematika di sini hanya untuk memperlihatkan bagaimana prinsip ini diterapkan.
*
Bandung, 02-02-2019
Guru yg pernah saya tanya atau mahasiswa saya sering menulis seperti ini pada bagian akhir.



benar untuk semua bilangan asli
.
Berdasarkan PIM,
Jika mahasiswa Bapak menjawab seperti itu, Bapak kasih nilai berapa utk skala 0 – 10?
Terima kasih.
LikeLike
1,3,5,7 di depannya jadi diabaikan ya maksudnya..?
LikeLike
wait.. i seee.. salah ketik maaf2.. comment sebelumnya di delete saja yaaa
LikeLike
Saya kurangi 1 poin; tetapi saya beri catatan tentang penulisan yang diharapkan.
Salam, HG
LikeLike