Fungsi logistik yang kita bahas sebelumnya merupakan suatu model matematika untuk pertumbuhan populasi pada suatu area yang terbatas. Tanpa memperhitungkan adanya batas tersebut, biasanya populasi bertumbuh secara eksponensial, dengan laju pertumbuhan pada setiap saat sebanding dengan besarnya populasi pada saat itu:
y ‘ = ky.
Dengan mengasumsikan bahwa area yang dapat ditinggali terbatas (sebutlah area maksimumnya A), laju pertumbuhan juga berbanding lurus dengan sisa area yang tersedia:
y ‘ = ky(A – y).
Nah, jika k = 1 dan A = 1, dan y(0) = 0,5, maka solusi persamaan diferensial di atas adalah y = ex/(1 + ex), sebagaimana telah dibahas dalam postingan sebelumnya.
Problem: Jika f(x) = ex/(1 + ex), tentukan f ‘(x), dan periksa bahwa f ‘(x) = f ‘(-x).
*
Bandung, 13-10-2017