3 Comments

  1. Kita harus tunjukkan bahwa f(f(x))=x
    Perhatikan:
    f(f(x))= f((k – x^3)^1/3) = (k – (k – x^3)^1/3)^3)^1/3 = (x^1/3)^3 = x

    Like

  2. 1. Misal y = g(x) = (k – x^3)^1/3
    Maka y^3 = k – x^3
    x^3 = k – y^3
    x = (k – y^3)^1/3
    shg g-1(x) = (k – x^3)^1/3 = g(x)
    Jadi g(x) adl fungsi involusi.

    2. tanh x/2 = (e^x – 1)/(e^x + 1)
    Misal y = f(x) = -ln((e^x – 1)/(e^x + 1))
    Maka – y = ln((e^x – 1)/(e^x + 1))
    (e^x – 1)/(e^x + 1) = e^-y
    e^x = (e^-y + 1)/(- e^-y + 1)
    e^-x = (- e^-y + 1)/(e^-y + 1)
    e^-x = (e^-y – 1)/(e^y + 1)
    – x = ln((e^-y – 1)/(e^y + 1))
    shg f-1(x) = -ln((e^-y – 1)/(e^y + 1)) = -ln(tanh x/2) = f(x)
    Jadi f(x) adl fungsi involusi.

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s