3 Day School on Harmonic and Functional Analysis

Hendra Gunawan

Analysis & Geometry Group Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung Bandung, Indonesia

18 – 20 December 2025

In this 3-Day School on Harmonic and Functional Analysis, we shall discuss:

- 1. L^p spaces
- 2. Operators on L^p spaces
- 3. Morrey spaces
- 4. Operators on Morrey spaces
- 5. More about Morrey spaces
- 6. Boundedness of certain operators on (weak) Morrey spaces

Key words: Lebesgue spaces, Morrey spaces, bounded operators.

LECTURE 6: MORE ABOUT MORREY SPACES

Here we shall discuss:

• Further Geometric Properties of Morrey Spaces

Many references will be given, for further reading.

Morrey Spaces

Definition, Version 2

For $1 \le p \le q < \infty$, the Morrey space $M_q^p = M_q^p(\mathbb{R}^d)$ is defined to be the space of all $f \in L_{loc}^p(\mathbb{R}^d)$ for which

$$||f||_{M_q^p} := \sup_{B=B(a,r)} |B|^{\frac{1}{q}-\frac{1}{p}} \left(\int_B |f(y)|^p dy \right)^{\frac{1}{p}} \tag{1}$$

is finite, where |B| denotes the (Lebesgue) measure of B in \mathbb{R}^d .

Note that $M_p^p = L^p$.

1. Morrey Spaces 1.1. Definition 4/20

Uniformly Convexity and Strcitly Convexity

A Banach space $(X, \| \cdot \|)$ is said to be *strictly convex* (SC) iff for every $x, y \in X$ with $x \neq y$ and $\|x\| = \|y\| = 1$, we have $\|x + y\| < 2$.

A Banach space $(X, \| \cdot \|)$ is said to be *uniformly convex* (UC) iff for every $0 < \epsilon \le 2$ there exists $\delta > 0$ such that for any $x, y \in X$ with $\|x\| = \|y\| = 1$ and $\|x - y\| \ge \epsilon$, we have $\|x + y\| \le 2(1 - \delta)$.

Note that $UC \Rightarrow SC$, but $SC \not\Rightarrow UC$.

In approximation theory, SC guarantees the uniqueness of best approximation but not the existence; while UC guarantees the existence and uniqueness of best approximation.

Thm 1. For $1 \le p < q < \infty$, M_q^p are not uniformly convex

As we shall see later, one can find $f,g\in M_q^p$ such that

$$||f||_{\mathcal{M}^{p}_{q}} = ||g||_{\mathcal{M}^{p}_{q}} = 1$$

and

$$||f+g||_{M_q^p}=2.$$

Hence M_q^p is not strictly convex, and accordingly M_q^p is not uniformly convex.

Note: For $1 \le p < q < \infty$, M_q^p is geometrically similar to L^1 or L^{∞} .

Uniformly Non-Squareness

A Banach space $(X, \|\cdot\|)$ is said to be *non-square* (NS) iff for every $x, y \in X$ with $\|x\| = \|y\| = 1$, we have either $\|x + y\| < 2$ or $\|x - y\| < 2$ [James, 1964].

To be non-square, there cannot be $x, y \in X$ with ||x|| = ||y|| = 1 such that ||x + y|| = ||x - y|| = 2 (or, equivalently, there cannot be $u, v \in X$ with ||u|| = ||v|| = 1 such that ||u + v|| = ||u - v|| = 1).

A Banach space $(X, \|\cdot\|)$ is said to be *uniformly non-square* (UNS) iff there exists $\delta > 0$ such that for every $x, y \in X$ with $\|x\| = \|y\| = 1$, we have either $\|x + y\| \le 2(1 - \delta)$ or $\|x - y\| \le 2(1 - \delta)$.

Note that UC \Rightarrow UNS. Moreover, X is reflexive when X is UNS [James, 1964].

Ref: R.C. James, Ann. Math. 80 (1964), 542-550.

Thm 2. For $1 \le p < q < \infty$, M_q^p are not uniformly non-square

One can construct $F, G \in M_q^p$ with ||F|| = ||G|| = 1 such that $||F + G||_{M_q^p} = ||F - G||_{M_q^p} = 2$, and conclude that M_q^p are not uniformly non-square.

To be precise, let $f(x) \equiv |x|^{-\frac{\sigma}{q}}$, $h(x) \equiv \chi_{(0,1)}(|x|)f(x)$, $k(x) \equiv f(x) - h(x)$, and g(x) = -f(x) + 2h(x). Then, $\|f\|_{M^{\rho}_q} = \|g\|_{M^{\rho}_q} = \|h\|_{M^{\rho}_q} = \|k\|_{M^{\rho}_q} = c_q$, say. Accordingly,

$$\min\{\|f+g\|_{M_q^\rho}, \|f-g\|_{M_q^\rho}\} = \min\{\|2h\|_{M_q^\rho}, \|2k\|_{M_q^\rho}\} = 2c_q.$$

Thus, $F = c_q^{-1} f$ and $G = c_q^{-1} g$ are the functions we look for.

Ref: H. Gunawan, E. Kikianty, Y. Sawano, and C. Schwanke, Bull. Kor. Math. Soc. 56 (2019), 1569–1575.

Uniformly Non- ℓ_n^1 -ness

A Banach space $(X, \|\cdot\|)$ is said to be *uniformly non-* ℓ_n^1 iff there exists a $\delta > 0$ such that for every $x_1, \ldots, x_n \in X$ with $\|x_1\| = \cdots = \|x_n\| = 1$, we have

$$\min \|x_1 \pm \cdots \pm x_n\| \leq n(1-\delta),$$

where the minimum is taken over all combinations of \pm signs [Beauzamy, 1985].

If, for every $\delta > 0$, we can find $x_1, \ldots, x_n \in X$ with $||x_1|| = \cdots = ||x_n|| = 1$ such that $||x_1 \pm \cdots \pm x_n|| > n(1 - \delta)$ for all choices of \pm signs, then X is not uniformly non- ℓ_n^1 .

Note that if *X* is uniformly non- ℓ_n^1 , then *X* is uniformly non- ℓ_{n+1}^1 .

The uniformly non- ℓ_n^1 -ness property is weaker than the so-called *uniformly n-convex* property.

Thm 3. For $1 \le p < q < \infty$, M_q^p are not uniformly non- ℓ_n^1

In [Gunawan et al., 2021], it is shown that, for $1 \le p < q < \infty$, M_q^p are not uniformly non- ℓ_n^1 . This result can be reproved by using analogous results in discrete Morrey spaces $\ell_q^p = \ell_q^p(\mathbb{Z}^d)$ and the fact that ℓ_q^p can be embedded into M_q^p via the mapping

$$\tilde{x}(t) := \sum_{k} x_k \chi_{Q[k-1,k)}(t), \quad x = (x_k)_{k \in \mathbb{Z}^d} \in \ell_q^p,$$

where Q[k-1,k) is the cube $[k_1-1,k_1)\times\cdots\times[k_d-1,k_d)$ in \mathbb{R}^d , for each $k=(k_1,\ldots,k_d)\in\mathbb{Z}^d$.

Note: The result on ℓ_q^p can be found in [Adam and Gunawan, 2022]. The space ℓ_q^p will be discussed in Lecture 6.

Discrete Morrey Spaces

Definition

For $m=(m_1,\ldots,m_d)\in\mathbb{Z}^d$ and $N\in\mathbb{N}\cup\{0\}$, write

$$S_{m,N}:=\{k\in\mathbb{Z}^d\,:\,\|k-m\|_\infty\leq N\},$$

where $||m||_{\infty} = \max\{|m_1|, \dots, |m_d|\}.$

Note that the cardinality of $S_{m,N}$ is then $|S_{m,N}| = (2N+1)^d$.

For $1 \le p \le q < \infty$, we define the *discrete Morrey space* $\ell_q^p = \ell_q^p(\mathbb{Z}^d)$ to be the set of all sequences $x : \mathbb{Z}^d \to \mathbb{R}$ such that

$$||x||_{\ell_q^p} := \sup_{m,N} |S_{m,N}|^{\frac{1}{q} - \frac{1}{p}} \Big(\sum_{k \in S_{m,N}} |\xi_k|^p \Big)^{\frac{1}{p}},$$

where $x = (\xi_k)_{k \in \mathbb{Z}^d}$ [Gunawan et al., 2018].

Thm 4. For $1 \le p < q < \infty$, ℓ_q^p are not uniformly non-square

Choose $J \geq \frac{q}{d(q-p)}$, and define $x = (\xi_k)_{k \in \mathbb{Z}^d}$ and $y = (\nu_k)_{k \in \mathbb{Z}^d}$ where

$$\xi_k := \begin{cases} 1, & \text{if } k = (1, 1, \dots, 1), \ (2^J, 1, \dots, 1), \\ 0, & \text{otherwise}, \end{cases}$$

and

$$u_k := \begin{cases} 1, & \text{if } k = (1, 1, \dots, 1), \\ -1, & \text{if } k = (2^J, 1, \dots, 1), \\ 0, & \text{otherwise.} \end{cases}$$

Then $||x||_{\ell^p_a} = ||y||_{\ell^p_a} = \max\{1, 2^{Jd(\frac{1}{q} - \frac{1}{p})} 2^{\frac{1}{p}}\} = 1$ (because of the choice of J).

Meanwhile $\|x + y\|_{\ell^p_q} = \|x - y\|_{\ell^p_q} = 2$.

Thm 5. For $1 \le p < q < \infty$, ℓ_q^p are not uniformly non- ℓ_n^1

Choose $J \geq \frac{q}{d(q-p)}$, and define $x = (\xi_k)_{k \in \mathbb{Z}^d}$ where

$$\xi_k := \begin{cases} 1, & \text{if } k = (1, 1, \dots, 1), \ (2^J, 1, \dots, 1), \dots, (2^{(2^{n-1}-1)J}, 1, \dots, 1), \\ 0, & \text{otherwise}. \end{cases}$$

Note that the distances between two consecutive values of k's for which $x_k = 1$ are getting larger as the points get further away from 0. Hence, as we look for the supremum, we need only to consider

$$v_j = |S_{m,N}|^{\frac{1}{q} - \frac{1}{p}} \Big(\sum_{k \in S_{m,N}} |\xi_k|^p \Big)^{\frac{1}{p}}, \quad j = 0, 1, \dots, 2^{m-1} - 1,$$

where $S_{m,N}$ is the smallest set that contains $(1,1,\ldots,1)$ and $(2^{jJ},1,\ldots,1)$. By the choice of J, $||x||_{\ell_n^p}=1$.

To prove our claim, we need to construct the other n-1 sequences.

T5. For $1 \le p < q < \infty$, ℓ_q^p are not uniformly non-octahedral

To illustrate the proof, let us consider the case where n=3, where the result states that ℓ_a^p are not *uniformly non-octahedral*.

Here we need to construct $x=(\xi_k)_{k\in\mathbb{Z}^d}, y=(\nu_k)_{k\in\mathbb{Z}^d}$ and $z=(\zeta_k)_{k\in\mathbb{Z}^d}$ such that

$$\|x\pm y\pm z\|_{\ell^p_q}=3$$

for all choices of \pm signs.

Note: $x \pm y \pm z$ are the four diagonals of the parallepiped spanned by x, y and z, Taking account $-x \pm y \pm z$ together, we have eight vectors, which corresponds to eight faces of an octahedral.

For n = 2, $x \pm y$ are the two diagonals of the parallelogram spanned by x and y.

We define

$$\xi_k := \begin{cases} 1, & \text{if } k = (1, 1, \dots, 1), \ (2^J, 1, \dots, 1), (2^{2J}, 1, \dots, 1), (2^{3J}, 1, \dots, 1), \\ 0, & \text{otherwise.} \end{cases}$$

$$\nu_k := \begin{cases} 1, & \text{if } k = (1, 1, \dots, 1), \ (2^J, 1, \dots, 1), \\ -1, & \text{if } k = (2^{2J}, 1, \dots, 1), \ (2^{3J}, 1, \dots, 1), \\ 0, & \text{otherwise}; \end{cases}$$

$$\zeta_k := \begin{cases} 1, & \text{if } k = (1, 1, \dots, 1), \ (2^{2J}, 1, \dots, 1), \\ -1, & \text{if } k = (2^J, 1, \dots, 1), \ (2^{3J}, 1, \dots, 1), \\ 0, & \text{otherwise.} \end{cases}$$

Then, one may observe that $||x \pm y \pm z||_{\ell^p_a} = 3$.

Von Neumann-Jordan Constant and James Constant

For a Banach space $(X, \|\cdot\|)$, the Von Neumann-Jordan constant is defined by

$$C_{NJ}(X) := \sup \left\{ \frac{\|x+y\|^2 + \|x-y\|^2}{2(\|x\|^2 + \|y\|^2)} \, : \, x,y \neq 0 \right\},$$

while the James constant is defined by

$$C_J(X) := \sup\{\min\{\|x+y\|, \|x-y\|\} : \|x\| = \|y\| = 1\}.$$

It is known that, for any Banach space X, we have $1 \le C_{NJ}(X) \le 2$ and $\sqrt{2} \le C_J(X) \le 2$.

Now let $X = \ell_q^p$ or M_q^p with $1 \le p < q < \infty$. As we can find $x, y \in X$ with $\|x\|_X = \|y\|_X = 1$ such that $\|x + y\|_X = \|x - y\|_X = 2$, we conclude that $C_{NJ}(X) = C_J(X) = 2$ [Gunawan et al., 2019].

n-th Von Neumann-Jordan Constant and n-th James Constant

For a Banach space $(X, \|\cdot\|)$, the *n*-th Von Neumann-Jordan constant is defined by

$$C_{NJ}^{(n)}(X) := \sup \left\{ \frac{\sum_{\pm} \|x_1 \pm \cdots \pm x_n\|^2}{2^{n-1} \sum_{i=1}^n \|x_i\|^2} \, : \, x_i \neq 0, \, \, i = 1, \dots, n
ight\},$$

while the *n*-th James constant is defined by

$$C_J^{(n)}(X) := \sup\{\min \|x_1 \pm \cdots \pm x_n\| : \|x_i\| = 1, i = 1, \dots, n\}.$$

It is known that for any Banach space X, we have $1 \le C_{NJ}^{(n)}(X) \le n$ [Kato et al., 1988] and $\sqrt{n} \le C_J^{(n)}(X) \le n$ [Maligandra et al., 2007].

Theorem 6. For
$$X = \ell_q^p$$
 or M_q^p with $1 \le p < q < \infty$, we have $C_{N,l}^{(n)}(X) = C_{l,l}^{(n)}(X) = n$.

Concluding Remarks

In this lecture, we have proved that, for $1 \le p < q < \infty$, ℓ_q^p are not uniformly non- ℓ_n^1 spaces, and accordingly M_q^p are not uniformly non- ℓ_n^1 spaces.

Consequently, these spaces are not uniformly *n*-convex for $n \ge 2$.

Related to the above results, we have found that $C_{NJ}^{(n)}(X) = C_J^{(n)}(X) = n$ for both $X = \ell_q^p$ and $X = M_q^p$, with $1 \le p < q < \infty$.

The values of the constants for both M_q^p and ℓ_q^p were obtained previously in [Gunawan et al., 2021] and [Adam and Gunawan, 2022], respectively.

What is new is the set of functions and sequences, respectively, that we construct to confirm the values of the constants.

4. Concluding Remarks 4.0. 18/20

REFERENCES I

Beauzamy, B. (1985). Introduction to Banach Spaces and Their Geometry. North-Holland, 2nd edition.

Gunawan, H., Hakim, D. I., and Putri, A. S. (2021). On geometric properties of morrey spaces. *Ufa Math. J.*, 13:131–136.

Gunawan, H., Kikianty, E., Sawano, Y., and Schwanke, C. (2019). Three geometric constants for morrey spaces. *Bull. Kor. Math. Soc.*, 56(6):1569–1575.

Gunawan, H., Kikianty, E., and Schwanke, C. (2018). Discrete morrey spaces and their inclusion properties. *Math. Nachr.*, 291:1283–1296.

4. Concluding Remarks 4.0. 19/20

REFERENCES II

James, R. C. (1964). Uniformly non-square banach spaces. *Ann. Math.*, 80:542–550.

Kato, M., Takahasi, Y., and Hashimoto, K. (1988). On the *n*-th von neumann-jordan constants for banach spaces. *Bull. Kyushu Inst. Tech.*, 45:25–33.

Maligandra, L., Nikolova, L., Persson, L.-E., and Zachariades, T. (2007). On *n*-th james and khintchine constants of banach spaces. *Math. Inequal. Appl.*, 1:1–22.