L^2 -ESTIMATES FOR SOME MAXIMAL FUNCTIONS

By Hendra Gunawan

SUNTO. Si presentono alcuni risultati sugli operatori massimali associati alle misure superficiali in \mathbb{R}^n . E. M. Stein [9] ha iniziato lo studio di quest'argomento, dimostrando una disuguaglianza *a priori* per la funzione massimale sferica, mediante l'utilizzo delle funzioni "g". In [3], M. Cowling e G. Mauceri hanno generalizzato il risultato di Stein. Qui si dà una dimostrazione diversa e forse più semplice della stima *a priori*, utilizzando la transformata di Mellin, come suggerito in un altro lavoro di Cowling e Mauceri [2].

Introduction

For a locally integrable function f on \mathbb{R}^n , one can define

$$\mathcal{M}f(x) = \sup_{r \in \mathbf{R}^+} \frac{1}{m(B^n)} \int_{B^n} |f(x - ry)| dy, \quad x \in \mathbf{R}^n$$

where B^n is the unit ball in \mathbb{R}^n and $m(B^n)$ is its measure. This is known as the maximal function of f. One basic property of $\mathcal{M}f$ is that it satisfies the L^p -inequality

$$\| \mathcal{M}f \|_p \le C_p \| f \|_p$$

whenever $f \in L^p(\mathbf{R}^n)$, 1 . This was first studied by G. H. Hardy and J. E. Littlewood [4] for <math>n = 1 and, for the general case, by N. Wiener [12] and by J. Marcinkiewicz

AMS Classification: 42B25.

and A. Zygmund [7]. Covering lemmas were used to prove the result. Marcinkiewicz [6] later proved this via an interpolation theorem. For a brief introduction to the theory of maximal functions we refer the reader to Stein [8, Ch. 1].

If f is smooth and rapidly decreasing, then one can replace B^n in the definition of $\mathcal{M}f$ by the unit sphere S^{n-1} and thus obtain the spherical maximal function of f. Stein [9] developed the theory and proved that, for $n \geq 3$, the *a priori* inequality still holds provided $f \in L^p(\mathbf{R}^n)$, $\frac{n}{n-1} . The detailed proof of this can be found in Stein and S. Wainger [10]; it involves the theory of the Fourier transform and an argument using <math>g$ -functions.

Cowling and Mauceri [2] reproved Stein's result and gave a new approach to the study of maximal functions. Here the maximal function of f, denoted now by $\mathcal{M}_{\phi}f$, is defined by

$$\mathcal{M}_{\phi}f(x) = \sup_{r \in \mathbf{R}^+} |\phi_r * f(x)|, \quad x \in \mathbf{R}^n$$

where ϕ is a distribution on \mathbf{R}^n and ϕ_r is its dilate; Mellin transform techniques were used to tackle the problems.

A generalisation of Stein's treatment of spherical maximal functions was also found by Cowling and Mauceri [3]. One of their results, namely the L^2 -estimate, asserts that for any smooth function f on \mathbb{R}^n , the inequality

$$\parallel \mathcal{M}_{\phi} f \parallel_2 \leq C \parallel f \parallel_2$$

holds whenever ϕ is compactly supported in \mathbf{R}^n and $|\widehat{\phi}(r\xi)| \leq C(1+r)^{-\alpha}$, $r \in \mathbf{R}^+$, $\xi \in S^{n-1}$, for some $\alpha > \frac{1}{2}$. This was proved via a study of Riesz operators, the theory of fractional differentiation, some properties of Bessel functions, and an argument of g-functions.

The aim of this note is to prove a similar result for surface measures, using Mellin transform techniques.

Throughout this note we shall use the following notation. The Fourier transform of a function f on \mathbb{R}^n is given by

$$\widehat{f}(\xi) = \int_{\mathbf{R}^n} f(x) e^{i\xi x} dx, \quad \xi \in \mathbf{R}^n.$$

 $\mathcal{S}(\mathbf{R}^n)$ denotes the space of all smooth and rapidly decreasing functions on \mathbf{R}^n . By expressions C, C_k , $C_{k,l}$ etc. we mean various constants which may vary from line to line. These constants usually depend on n— the dimension of the ambient space.

Let ϕ be a distribution on \mathbb{R}^n . For $r \in \mathbb{R}^+$, we define the dilate ϕ_r by duality

$$\int_{\mathbf{R}^n} \phi_r(x) f(x) dx = \int_{\mathbf{R}^n} \phi(x) f(rx) dx, \quad f \in \mathcal{S}(\mathbf{R}^n).$$

One may observe that

$$\widehat{\phi}_r(\xi) = \widehat{\phi}(r\xi), \quad r \in \mathbf{R}^+, \ \xi \in S^{n-1}.$$

Now, for each $f \in \mathcal{S}(\mathbf{R}^n)$, define the associated maximal function $\mathcal{M}_{\phi}f$ by

$$\mathcal{M}_{\phi}f(x) = \sup_{r \in \mathbf{R}^+} |\phi_r * f(x)|, \quad x \in \mathbf{R}^n.$$

The focus of our interest is the L^2 -inequality

$$\|\mathcal{M}_{\phi}f\|_{2} \leq C \|f\|_{2}, \quad f \in \mathcal{S}(\mathbf{R}^{n}).$$

Using the Mellin transform, we write

$$\widehat{\phi}_r(\xi) = \int_{\mathbf{R}} \psi(u,\xi) \ r^{iu} \ du, \quad r \in \mathbf{R}^+,$$

where

$$\psi(u,\xi) = \frac{1}{2\pi} \int_0^\infty \widehat{\phi}_r(\xi) \ r^{-1-iu} \ dr, \quad u \in \mathbf{R}.$$

(See [2] for more about the techniques.) For s > 0, one can observe that

$$\psi(u, s\xi) = s^{iu} \psi(u, \xi), \quad u \in \mathbf{R}, \ \xi \in \mathbf{R}^n.$$

Moreover, from the theory of the Fourier transform, for all f in $\mathcal{S}(\mathbf{R}^n)$,

$$(\phi_r * f)^{\widehat{}} = \widehat{\phi}_r \widehat{f}$$

whence

$$\begin{split} \phi_r * f &= (\widehat{\phi}_r \, \widehat{f}) \\ &= \left\{ \int_{\mathbf{R}} \psi(u,.) \, \widehat{f} \, r^{iu} \, du \right\} \\ &= \int_{\mathbf{R}} \left\{ \check{\psi}(u,.) * f \right\} r^{iu} \, du. \end{split}$$

(Here * denotes the inverse Fourier transform.) Hence we find that

$$\mathcal{M}_{\phi}f(x) \leq \int_{\mathbf{R}} |\check{\psi}(u,.) * f(x)| du, \quad x \in \mathbf{R}^{n}.$$

Applying Minkowski's inequality and Plancherel's theorem, we obtain

$$\| \mathcal{M}_{\phi} f \|_{2} \leq \int_{\mathbf{R}} \| \check{\psi}(u, .) * f \|_{2} du$$

$$= \int_{\mathbf{R}} \| \psi(u, .) \widehat{f} \|_{2} du$$

$$\leq \int_{\mathbf{R}} \| \psi(u, .) \|_{\infty} \| \widehat{f} \|_{2} du$$

$$= (2\pi)^{\frac{1}{2}} \| f \|_{2} \int_{\mathbf{R}} \| \psi(u, .) \|_{\infty} du$$

where

$$\| \psi(u,.) \|_{\infty} = \sup_{\xi \in S^{n-1}} |\psi(u,\xi)|, \quad u \in \mathbf{R}.$$

Thus, to have the L^2 -estimate, it suffices to verify

$$\int_{\mathbf{R}} \| \psi(u, .) \|_{\infty} du < \infty.$$

But this would be satisfied when

$$|\psi(u,\xi)| \le C(1+|u|)^{-1-\delta}, \quad u \in \mathbf{R}, \ \xi \in S^{n-1},$$

for some $\delta > 0$. With this approach, therefore, we attempt to find conditions on ϕ such that this inequality holds.

We are grateful to Prof. M. Cowling for his suggestions during the preparation and the writing of this paper.

Ι

In this part, we are concerned with some maximal operators associated to distributions on \mathbb{R}^n . Our results here are based on a study of Riesz operators, due to Cowling and Mauceri [3].

For a, b in \mathbb{C} , with Re(a) > 0, and a distribution ϕ on \mathbb{R}^n , we define the Riesz operator $R_{a,b}$ via

$$(R_{a,b}\phi)^{\hat{}}(\xi) = \frac{2}{\Gamma(b)} \int_0^1 s^{a-1} (1-s^2)^{b-1} \widehat{\phi}(s\xi) ds, \quad \xi \in \mathbf{R}^n.$$

This clearly makes sense for Re(b) > 0. Moreover, by analytic continuation, it extends to Re(b) > -N for any $N \in \mathbf{Z}^+$ (see [3] for justification).

The following lemma generalises [3, Lemma 1.2].

Lemma 1.1 Suppose ϕ is a compactly supported distribution on \mathbf{R}^n and for $k = 0, 1, 2, \dots$ there exist $\alpha_k > 0$ such that

$$\left| \frac{\partial^k}{\partial r^k} \widehat{\phi}(r\xi) \right| \le C_k (1+r)^{-\alpha_k}, \quad r \in \mathbf{R}^+, \ \xi \in S^{n-1}.$$

Then for $Re(a_k) > \alpha_k - k$, k = 0, 1, 2, ..., and any $\delta > 0$, we have

$$\left| \frac{\partial^k}{\partial r^k} (R_{a_k,b} \phi) (r\xi) \right| \leq C_k (1+r)^{-\alpha_k + m + \delta}, \quad r \in \mathbf{R}^+, \ \xi \in S^{n-1},$$

where $m = \max(0, -\text{Re}(b))$.

Proof. For each $k = 0, 1, 2, \ldots$, we have, whenever $r \in \mathbf{R}^+$, $\xi \in S^{n-1}$,

$$\frac{\partial^k}{\partial r^k} (R_{a_k,b}\phi) \hat{}(r\xi) = \frac{2}{\Gamma(b)} \int_0^1 s^{a_k-1} (1-s^2)^{b-1} \frac{\partial^k}{\partial r^k} \widehat{\phi}(sr\xi) ds$$
$$= \frac{2}{\Gamma(b)} \int_0^1 s^{a_k+k-1} (1-s^2)^{b-1} \frac{\partial^k}{\partial (sr)^k} \widehat{\phi}(sr\xi) ds.$$

As in the proof of [3, Lemma 1.2], we find that for $Re(a_k) > \alpha_k - k$, and $\delta > 0$,

$$\left| \frac{\partial^k}{\partial r^k} (R_{a_k,b} \phi) (r\xi) \right| \leq C_k (1+r)^{-\alpha_k + m + \delta}, \quad r \in \mathbf{R}^+, \ \xi \in S^{n-1},$$

where $m = \max(0, -\text{Re}(b))$. \square

Now we have the following theorem.

Theorem 1.2 Suppose ϕ is a compactly supported distribution on \mathbf{R}^n with $\widehat{\phi}(0) = 0$ such that

$$|\widehat{\phi}(r\xi)| \leq C(1+r)^{-\epsilon}, \quad r \in \mathbf{R}^+, \ \xi \in S^{n-1}$$

and

$$\left| \frac{\partial}{\partial r} \widehat{\phi}(r\xi) \right| \le C (1+r)^{-1-\epsilon}, \quad r \in \mathbf{R}^+, \ \xi \in S^{n-1}$$

for some $\epsilon > 0$. Then we have the L^2 -estimate

$$\parallel \mathcal{M}_{\phi} f \parallel_2 \leq C \parallel f \parallel_2, \quad f \in \mathcal{S}(\mathbf{R}^n).$$

Proof. For each ξ in S^{n-1} , write

$$\widehat{\phi}(r\xi) = \int_{\mathbf{R}} \psi(u,\xi) r^{iu} du, \quad r \in \mathbf{R}^+,$$

where

$$\psi(u,\xi) = \frac{1}{2\pi} \int_0^\infty \widehat{\phi}(r\xi) r^{-1-iu} dr, \quad u \in \mathbf{R}.$$

We need to show that $|\psi(u,\xi)| \leq C(1+|u|)^{-1-\delta}, u \in \mathbf{R}$, for some $\delta > 0$.

First, since $\widehat{\phi}(0) = 0$ and $\widehat{\phi}$ is differentiable, we have

$$|\widehat{\phi}(r\xi)| \leq C r, \quad 0 \leq r \leq 1,$$

and thus, whenever $u \in \mathbf{R}$, we obtain

$$|\psi(u,\xi)| \leq \int_0^\infty |\widehat{\phi}(r\xi)| r^{-1} dr$$

$$\leq \int_0^1 C dr + \int_1^\infty C r^{-1-\epsilon} dr$$

$$\leq C.$$

Next, we invoke the identity

$$\phi = R_{a+2b,-b}R_{a,b}\phi$$

where Re(a) > 0, Re(a + 2b) > 0 (see [3, Lemma 1.3]), to have

$$\frac{\partial}{\partial r}\widehat{\phi}(r\xi) = \frac{2}{\Gamma(-b)} \int_0^1 s^{a+2b-1} (1-s^2)^{-b-1} \frac{\partial}{\partial r} (R_{a,b}\phi)\widehat{}(sr\xi) ds, \quad r \in \mathbf{R}^+.$$

Applying Fubini's theorem, we obtain

$$\begin{split} 2\pi \, iu \, \psi(u,\xi) &= -\int_0^\infty \widehat{\phi}(r\xi) \, (-iu) \, r^{-1-iu} \, dr \\ &= -\int_0^\infty \widehat{\phi}(r\xi) \, \frac{\partial}{\partial r} r^{-iu} \, dr \\ &= \int_0^\infty \frac{\partial}{\partial r} \widehat{\phi}(r\xi) \, r^{-iu} \, dr \\ &= \int_0^\infty \frac{2}{\Gamma(-b)} \int_0^1 s^{a+2b-1} \, (1-s^2)^{-b-1} \, \frac{\partial}{\partial r} (R_{a,b}\phi) \, (sr\xi) \, ds \, r^{-iu} \, dr \\ &= \frac{2}{\Gamma(-b)} \int_0^1 \int_0^\infty \frac{\partial}{\partial (sr)} (R_{a,b}\phi) \, (sr\xi) \, (sr)^{-iu} d(sr) \, s^{a+2b-1+iu} (1-s^2)^{-b-1} ds \\ &= \frac{2}{\Gamma(-b)} \int_0^\infty \frac{\partial}{\partial t} (R_{a,b}\phi) \, (t\xi) \, t^{-iu} \, dt \, \int_0^1 s^{a+2b-1+iu} \, (1-s^2)^{-b-1} \, ds \\ &= \frac{\Gamma(\frac{a+2b+iu}{2})}{\Gamma(\frac{a+iu}{2})} \int_0^\infty \frac{\partial}{\partial t} (R_{a,b}\phi) \, (t\xi) \, t^{-iu} \, dt. \end{split}$$

For $\operatorname{Re}(a) > \epsilon$ and $b = -\frac{\epsilon}{4}$, we have

$$|u\,\psi(u,\xi)| \leq \left|\frac{\Gamma(-\frac{\epsilon}{4} + \frac{a+iu}{2})}{\Gamma(\frac{a+iu}{2})}\right| \int_0^\infty \left|\frac{\partial}{\partial t} (R_{a,-\frac{\epsilon}{4}}\phi)^{\widehat{}}(t\xi)\right| dt \leq C|u|^{-\frac{\epsilon}{4}}, \quad |u| > 1,$$

since $|\Gamma(c+id)| \sim C e^{-\frac{\pi}{2}|d|} |d|^{c-\frac{1}{2}}$ as $|d| \to \infty$ (see [11, p. 151]) and $\left|\frac{\partial}{\partial t} (R_{a,-\frac{\epsilon}{4}}\phi)^{\hat{}}(t\xi)\right| \le C (1+t)^{-1-\frac{\epsilon}{2}}$ for $t \in \mathbf{R}^+$ (by Lemma 1.1, with $\delta = \frac{\epsilon}{4}$). We therefore find that

$$|\psi(u,\xi)| \le C |u|^{-1-\frac{\epsilon}{4}}, \quad |u| > 1.$$

Combining this with the previous inequality, we obtain

$$|\psi(u,\xi)| \le C(1+|u|)^{-1-\frac{\epsilon}{4}}, \quad u \in \mathbf{R}, \ \xi \in S^{n-1},$$

as desired. \square

Remark. The condition $\widehat{\phi}(0) = 0$ in the theorem can in fact be removed. When ϕ does not satisfy this condition, we can set $g = \phi - \varphi$, where $\varphi \in \mathcal{S}(\mathbf{R}^n)$ with $\widehat{\varphi}(0) = \widehat{\phi}(0)$. Thus g satisfies the hypothesis, and hence the conclusion holds for $\mathcal{M}_g f$. But this implies that the conclusion also holds for $\mathcal{M}_{\phi} f$ since $\mathcal{M}_{\varphi} f$ is known to be dominated by the standard

maximal function of f. Moreover, the theorem is also true for a distribution ϕ which is not compactly supported but such that $\widehat{\phi}$ is C^1 .

II

Here we deal with some maximal operators associated to surface measures on \mathbb{R}^n .

We first outline the result of Cowling et al [1]. Let \mathcal{H} be a smooth compact convex hypersurface of class C^{∞} in \mathbf{R}^n whose tangent lines have order of contact at most $m < \infty$. Suppose μ is a smooth surface measure on \mathcal{H} . Then, it is shown in [1] that for all $r \in \mathbf{R}^+$, $\xi \in S^{n-1}$, we have

$$\widehat{\mu}(r\xi) = F(r,\xi) e^{-irp(\xi)\cdot\xi} + F(r,-\xi) e^{-irp(-\xi)\cdot\xi} + E(r,\xi)$$

where

$$\begin{aligned} |p(\pm\xi)\cdot\xi| &\leq C, \\ \left|\frac{\partial^k}{\partial r^k}F(r,\pm\xi)\right| &\leq C_k\,r^{-k}\,K(r), \quad k=0,1,2,\dots \\ &\qquad \qquad \text{with } K(r) = O(r^{-\alpha}) \text{ as } r \to \infty, \text{ for some } \alpha>0, \\ \text{and } \left|\frac{\partial^k}{\partial r^k}E(r,\xi)\right| &\leq C_{k,l}\,r^{-l}, \quad k,l=0,1,2,\dots. \end{aligned}$$

By rearranging F and E for $0 \le r \le 1$, we may assume that $F(0, \pm \xi) = 0$ (or even $F(r, \pm \xi) = 0$, for $0 \le r < s < 1$). If, in addition, we have for all $r \in \mathbf{R}^+$, $\xi \in S^{n-1}$,

$$\left| \frac{\partial^k}{\partial r^k} F(r, \pm \xi) \right| \leq C_k r^{-k-\alpha}, \quad k = 0, 1, 2, \dots,$$

for some $\alpha > \frac{1}{2}$, we then say that μ is 'of good decay type'.

Our results are the following.

Theorem 2.1 Suppose that \mathcal{H} is a hypersurface in \mathbb{R}^n , and that μ is a surface measure of good decay type on \mathcal{H} . Then we have the L^2 -estimate

$$\parallel \mathcal{M}_{\mu} f \parallel_2 \le C \parallel f \parallel_2, \quad f \in \mathcal{S}(\mathbf{R}^n).$$

Theorem 2.2 Let μ be a measure on \mathbf{R}^n , p be a bounded function on S^{n-1} , and $0 < \epsilon < 3$. If, for each ξ in S^{n-1} , there exists a measure $\nu = \nu_{\xi}$ on \mathbf{R} such that

(i)
$$\widehat{\nu}(r) = \widehat{\mu}(r\xi) e^{irp(\xi)\cdot\xi} (1+r^2)^{\frac{1+\epsilon}{4}}, \quad r \in \mathbf{R}^+,$$

$$\int_{\mathbf{R}} (1+s^2) |d\nu(s)| < C,$$

with C being independent of ξ , then we have the L²-estimate

$$\parallel \mathcal{M}_{\mu} f \parallel_2 \leq C \parallel f \parallel_2, \quad f \in \mathcal{S}(\mathbf{R}^n).$$

We shall prove later that Theorem 2.1 is in fact a special case of Theorem 2.2. Now, Theorem 2.2 follows from the lemma below. We are indebted to Prof. G. Mauceri for suggesting its proof.

Lemma 2.3 Let μ be a measure on \mathbf{R}^n such that $\widehat{\mu}(0) = 0$ and $\nabla \widehat{\mu}(0) = 0$, p be a bounded function on S^{n-1} , and $0 < \epsilon < 3$. Suppose that for each ξ in S^{n-1} there exists a measure $\nu = \nu_{\xi}$ on \mathbf{R} such that

(i)
$$\widehat{\nu}(r) = \widehat{\mu}(r\xi) e^{irp(\xi)\cdot\xi} (1+r^2)^{\frac{1+\epsilon}{4}}, \quad r \in \mathbf{R}^+,$$

$$\int_{\mathbf{R}} (1+s^2) |d\nu(s)| < C,$$

with C being independent of ξ . Define $\psi = \psi_{\xi}$ by

$$\psi(u) = \frac{1}{2\pi} \int_0^\infty \widehat{\mu}(r\xi) r^{-1-iu} dr, \quad u \in \mathbf{R}.$$

Then we have

$$|\psi(u)| \le C (1+|u|)^{-1-\frac{\epsilon}{2}}, \quad u \in \mathbf{R},$$

with
$$C = C(\epsilon, p) \int_{\mathbf{R}} (1 + s^2) |d\nu(s)|$$
.

Proof. We note first that $\widehat{\nu}$ is C^2 from (ii). We also have $\widehat{\nu}(0) = 0$ and $\widehat{\nu}'(0) = 0$. And, for $0 \le r \le 1$, we have

$$|\widehat{\nu}(r)| = |\widehat{\nu}(r) - \widehat{\nu}(0)| \quad (\text{as } \widehat{\nu}(0) = 0)$$

$$= \left| r \frac{\partial \widehat{\nu}}{\partial r}(\rho) \right| \quad (\text{for some } 0 < \rho < r)$$

$$\leq r \int_{\mathbf{R}} |s| |d\nu(s)|$$

$$\leq r \int_{\mathbf{R}} (1 + s^2) |d\nu(s)|$$

$$\leq C r.$$

Now, from (i), we have

$$\widehat{\mu}(r\xi) = \widehat{\nu}(r) e^{-irq} (1+r^2)^{-\frac{1+\epsilon}{4}}, \quad r \in \mathbf{R}^+,$$

with $q = p(\xi) \cdot \xi$. Thus, whenever $u \in \mathbf{R}$,

$$|\psi(u)| \leq \int_{0}^{\infty} |\widehat{\mu}(r\xi)| r^{-1} dr$$

$$\leq \int_{0}^{1} |\widehat{\nu}(r)| r^{-1} dr + \int_{1}^{\infty} |\widehat{\nu}(r)| (1+r^{2})^{-\frac{1+\epsilon}{4}} r^{-1} dr$$

$$\leq \int_{0}^{1} C dr + \int_{1}^{\infty} ||\widehat{\nu}||_{\infty} r^{-\frac{3}{2}} dr$$

$$\leq C \int_{\mathbf{R}} (1+s^{2}) |d\nu(s)|$$

$$< \infty.$$

From here on we assume |u| > 1. Take a smooth function φ on \mathbf{R}^+ such that $\varphi(r) = 0$ if $0 \le r \le \frac{3}{2}$ and $\varphi(r) = 1$ if $r \ge 2$. We then write

$$2\pi \psi(u) = \int_0^\infty \widehat{\nu}(r) e^{-irq} (1+r^2)^{-\frac{1+\epsilon}{4}} r^{-1-iu} dr$$

$$= \int_0^\infty \widehat{\nu}(r) e^{-irq} \{1-\varphi(r)\} (1+r^2)^{-\frac{1+\epsilon}{4}} r^{-1-iu} dr$$

$$+ \int_0^\infty \widehat{\nu}(r) e^{-irq} \varphi(r) \left\{ (1+r^2)^{-\frac{1+\epsilon}{4}} - r^{-\frac{1+\epsilon}{2}} \right\} r^{-1-iu} dr$$

$$+ \int_0^\infty \widehat{\nu}(r) e^{-irq} \varphi(r) r^{-\frac{1+\epsilon}{2}} r^{-1-iu} dr$$

$$= \psi_1(u) + \psi_2(u) + \psi_3(u), \text{ say.}$$

For $\psi_1(u)$, we have

$$-iu \,\psi_1(u) = \int_0^\infty \widehat{\nu}(r) \, e^{-irq} \, \{1 - \varphi(r)\} \, (1 + r^2)^{-\frac{1+\epsilon}{4}} \, \frac{\partial}{\partial r} r^{-iu} \, dr$$
$$= -\int_0^\infty \frac{\partial}{\partial r} \left[\widehat{\nu}(r) \, e^{-irq} \, \{1 - \varphi(r)\} \, (1 + r^2)^{-\frac{1+\epsilon}{4}} \right] \, r^{-iu} \, dr,$$

and similarly

$$-iu(1-iu)\,\psi_1(u) = \int_0^\infty \frac{\partial^2}{\partial r^2} \left[\widehat{\nu}(r) \, e^{-irq} \left\{ 1 - \varphi(r) \right\} (1+r^2)^{-\frac{1+\epsilon}{4}} \right] \, r^{1-iu} \, dr.$$

But $1 - \varphi(r) = 0$ for $r \geq 2$, and $\frac{\partial^2}{\partial r^2} \left[\widehat{\nu}(r) e^{-irq} \left\{ 1 - \varphi(r) \right\} (1 + r^2)^{-\frac{1+\epsilon}{4}} \right]$ is in fact a linear combination of products of derivatives of the four factors, which are all bounded for $0 \leq r \leq 2$ (in particular, the derivatives of $\widehat{\nu}$ are dominated by $\int_{\mathbf{R}} (1 + s^2) |d\nu(s)|$). Thus we obtain

$$|iu(1-iu)\,\psi_1(u)| \leq \int_0^2 \left|\frac{\partial^2}{\partial r^2}\left[\widehat{\nu}(r)\,e^{-irq}\left\{1-\varphi(r)\right\}(1+r^2)^{-\frac{1+\epsilon}{4}}\right]\right|\,r\,dr \leq C,$$

which gives

$$|\psi_1(u)| \leq C|u|^{-2}$$
.

For $\psi_2(u)$, we also have

$$-iu(1-iu)\,\psi_2(u) = \int_0^\infty \frac{\partial^2}{\partial r^2} \left[\widehat{\nu}(r)\,e^{-irq}\,\varphi(r)\,\left\{ (1+r^2)^{-\frac{1+\epsilon}{4}} - r^{-\frac{1+\epsilon}{2}} \right\} \right] \,r^{1-iu}\,\,dr.$$

Put

$$R(r) = (1+r^2)^{-\frac{1+\epsilon}{4}} - r^{-\frac{1+\epsilon}{2}} = r^{-\frac{1+\epsilon}{2}} \left\{ (1+r^{-2})^{-\frac{1+\epsilon}{4}} - 1 \right\}, \quad r \in \mathbf{R}^+.$$

For $r \geq \frac{3}{2}$, we can expand $(1+r^{-2})^{-\frac{1+\epsilon}{4}}$ into its convergent Taylor series to get

$$(1+r^{-2})^{-\frac{1+\epsilon}{4}} = 1 - \frac{1+\epsilon}{4}r^{-2} + \frac{1+\epsilon}{4}\frac{5+\epsilon}{4}\frac{r^{-4}}{2!} - \cdots$$

Hence

$$R(r) = -\frac{1+\epsilon}{4} r^{-\frac{5+\epsilon}{2}} + \text{terms of a lower power of } r, \quad r \ge \frac{3}{2}.$$

We therefore find that |R(r)|, $|\frac{\partial}{\partial r}R(r)|$ and $|\frac{\partial^2}{\partial r^2}R(r)| \leq C r^{-\frac{5+\epsilon}{2}}$ for $r \geq \frac{3}{2}$. And thus, since the derivatives of $\widehat{\nu}$, e^{-irq} and φ are bounded, we obtain

$$|iu(1-iu)\psi_2(u)| \le \int_{\frac{3}{2}}^{\infty} C r^{-\frac{5+\epsilon}{2}} dr \le C,$$

which gives

$$|\psi_2(u)| \leq C|u|^{-2}.$$

For $\psi_3(u)$, we write

$$\psi_{3}(u) = \int_{0}^{\infty} \widehat{\nu}(r) e^{-irq} \varphi(r) r^{-\frac{3+\epsilon}{2}-iu} dr$$

$$= \int_{0}^{\infty} \widehat{\nu}(r) e^{-irq} \varphi(r) r^{z-1} dr \qquad (\text{with } z = -\frac{1+\epsilon}{2} - iu)$$

$$= \int_{\mathbb{R}} \int_{0}^{\infty} \varphi(r) r^{z-1} e^{-ir(s+q)} dr d\nu(s) \quad (\text{as } \varphi(r) = 0 \text{ for } 0 \le r \le \frac{3}{2}).$$

Then, for fixed $s \in \mathbf{R}$, consider

$$I(z) = \int_0^\infty \varphi(r) r^{z-1} e^{-ir(s+q)} dr, \quad z \in \mathbf{C}.$$

We note that I(z) continues analytically into $Re(z) \leq 1$. For 0 < Re(z) < 1, we write

$$I(z) = \int_0^\infty \{\varphi(r) - 1\} r^{z-1} e^{-ir(s+q)} dr + \int_0^\infty r^{z-1} e^{-ir(s+q)} dr$$

= $I_4(z) + I_5(z)$, say.

Corresponding to $I_4(z)$, we have

$$\psi_4(z) = \int_{\mathbf{R}} I_4(z) \ d\nu(s) = \int_0^\infty \widehat{\nu}(r) e^{-irq} \{ \varphi(r) - 1 \} r^{z-1} \ dr,$$

which continues analytically into -2 < Re(z) < 1, since $\widehat{\nu}(0) = 0$ and $\widehat{\nu}'(0) = 0$. Hence

$$\psi_4(u) = \int_0^\infty \widehat{\nu}(r) e^{-irq} \left\{ \varphi(r) - 1 \right\} r^{-\frac{3+\epsilon}{2} - iu} dr$$
$$= \int_0^\infty \left[\widehat{\nu}(r) e^{-irq} \left\{ \varphi(r) - 1 \right\} r^{-\frac{1+\epsilon}{2}} \right] r^{-1-iu} dr.$$

Integrating by parts twice, we obtain

$$-iu(1-iu)\,\psi_4(u) = \int_0^\infty \frac{\partial^2}{\partial r^2} \left[\widehat{\nu}(r) \, e^{-irq} \left\{ \varphi(r) - 1 \right\} r^{-\frac{1+\epsilon}{2}} \right] \, r^{1-iu} \, dr.$$

But $\varphi(r)-1=0$ for $r\geq 2$, and $\left|\frac{\partial^2}{\partial r^2}\left[\widehat{\nu}(r)\,e^{-irq}\left\{\varphi(r)-1\right\}r^{-\frac{1+\epsilon}{2}}\right]\right|\leq C\,r^{-\frac{1+\epsilon}{2}}$ for $0\leq r\leq 2$ since again the derivatives of $\widehat{\nu}$, e^{-irq} and φ are bounded. Hence we find that

$$|iu(1-iu)\psi_4(u)| \le \int_0^2 C r^{\frac{1-\epsilon}{2}} dr < \infty \text{ (as } 0 < \epsilon < 3),$$

whence

$$|\psi_4(u)| \le C|u|^{-2}$$
.

It remains to estimate $\psi_5(u) = \int_{\mathbf{R}} I_5(z) \ d\nu(s)$, where $z = -\frac{1+\epsilon}{2} - iu$. Let h be the function on \mathbf{C} defined by

$$h(w) = w^{z-1} e^{-wt}, \quad z = -\frac{1+\epsilon}{2} - iu, \ t \in \mathbf{R}.$$

By integrating h around the contour γ_1 (see Fig. 1) for t > 0, or around the contour γ_2 (see Fig. 2) for t < 0, one can observe that, as $R \to \infty$,

$$\int_0^\infty r^{z-1} e^{-irt} dr = (it)^{-z} \Gamma(z), \quad t \neq 0.$$

Fig. 1 The contour γ_1

Fig. 2 The contour γ_2

Hence

$$|\psi_{5}(u)| = \left| \int_{\mathbf{R}} I_{5}(z) \, d\nu(s) \right| \qquad (\text{with } z = -\frac{1+\epsilon}{2} - iu)$$

$$= \left| \int_{\mathbf{R}} \int_{0}^{\infty} r^{z-1} e^{-ir(s+q)} \, dr \, d\nu(s) \right|$$

$$= \left| \int_{\mathbf{R}} \{i(s+q)\}^{-z} \, \Gamma(z) \, d\nu(s) \right|$$

$$\leq e^{-\frac{\pi}{2}u} \left| \Gamma(-\frac{1+\epsilon}{2} - iu) \right| \int_{\mathbf{R}} |s+q|^{\frac{1+\epsilon}{2}} \, |d\nu(s)|$$

$$\leq C |u|^{-1-\frac{\epsilon}{2}} \int_{\mathbf{R}} |s+q|^{\frac{1+\epsilon}{2}} \, |d\nu(s)| \qquad (\text{as } |u| > 1)$$

$$\leq C |u|^{-1-\frac{\epsilon}{2}} \int_{\mathbf{R}} \{1 + (s+q)^{2}\} \, |d\nu(s)| \qquad (\text{as } 0 < \epsilon < 3)$$

$$\leq C |u|^{-1-\frac{\epsilon}{2}} (1+q^{2}) \int_{\mathbf{R}} (1+s^{2}) \, |d\nu(s)|$$

$$\leq C |u|^{-1-\frac{\epsilon}{2}}.$$

Combining this with the previous results, we obtain

$$|\psi(u)| \le C |u|^{-1-\frac{\epsilon}{2}}, \quad |u| > 1,$$

with $C = C(\epsilon, p) \int_{\mathbf{R}} (1 + s^2) |d\nu(s)|$. This completes the proof. \square

To prove Theorem 2.1, we adapt a result of Hörmander [5, pp. 121-122].

Proposition 2.4 Suppose that Φ is a smooth function on \mathbf{R} , and that for $k = 0, 1, 2, \dots$

$$\left| \frac{\partial^k}{\partial r^k} \Phi(r) \right| \le C_k (1 + |r|)^{-k - \epsilon}, \quad r \in \mathbf{R},$$

for some $\epsilon > 0$. It then follows that $\check{\Phi} \in L^1(\mathbf{R})$. In general, $s^k \check{\Phi}(s) \in L^1(\mathbf{R})$, for $k = 0, 1, 2, \dots$

Proof. First of all (see [5, p. 121]), there exists a function $\varphi \in C_0^{\infty}(\mathbf{R})$ supported in $\{r: \frac{1}{2} < |r| < 2\}$ such that

$$\sum_{j=-\infty}^{\infty} \varphi(2^{-j}r) = 1, \quad r \neq 0.$$

For this φ , we have

$$\sum_{j=1}^{\infty} \varphi(2^{-j}r) = 0, \quad 0 < |r| \le \frac{1}{2}$$

and

$$\sum_{j=1}^{\infty} \varphi(2^{-j}r) = 1, \quad |r| > 2.$$

Let us put

$$\varphi_0(r) = \begin{cases}
1 - \sum_{j=1}^{\infty} \varphi(2^{-j}r), & \text{if } r \neq 0, \\
1, & \text{if } r = 0.
\end{cases}$$

It is clear that $\varphi_0 \in C_0^{\infty}(\mathbf{R})$ and that

$$\varphi_0(r) + \sum_{j=1}^{\infty} \varphi(2^{-j}r) = 1, \quad r \in \mathbf{R}.$$

This enables us to decompose Φ into

$$\Phi = \Phi_0 + \sum_{j=1}^{\infty} \Phi_j$$

where $\Phi_0 = \varphi_0 \Phi$ and $\Phi_j(r) = \varphi(2^{-j}r) \Phi(r), r \in \mathbf{R} \ (j = 0, 1, 2, ...).$

We see that $\Phi_0 = \varphi_0 \Phi$ is smooth and compactly supported on **R**. Thus for all $s \in \mathbf{R}$

$$|\check{\Phi}_0(s)| \leq \frac{1}{2\pi} \int_{\mathbf{R}} |\Phi_0(r)| dr \leq C$$

and

$$|s^2 \check{\Phi}_0(s)| \le \frac{1}{2\pi} \int_{\mathbf{R}} \left| \frac{\partial^2}{\partial r^2} \Phi_0(r) \right| dr \le C.$$

Hence

$$|\check{\Phi}_0(s)| \le C (1+|s|)^{-2}, \quad s \in \mathbf{R},$$

yielding

$$\int_{\mathbf{R}} |\check{\Phi}_0(s)| \ ds < \infty.$$

Now, for j = 1, 2, 3, ..., we have

$$\int_{\mathbf{R}} |\Phi_{j}(r)|^{2} dr = \int_{\mathbf{R}} |\varphi(2^{-j}r) \Phi(r)|^{2} dr
\leq C \int_{2^{j-1} \leq |r| \leq 2^{j+1}} |\Phi(r)|^{2} dr
\leq C \int_{2^{j-1} \leq |r| \leq 2^{j+1}} |r|^{-2\epsilon} dr
\leq C 2^{(1-2\epsilon)j},$$

and similarly

$$\begin{split} \int_{\mathbf{R}} \left| 2^{j} \frac{\partial}{\partial r} \Phi_{j}(r) \right|^{2} dr \\ &= \int_{\mathbf{R}} \left| \frac{\partial \varphi}{\partial r} (2^{-j}r) \Phi(r) + 2^{j} \varphi(2^{-j}r) \frac{\partial}{\partial r} \Phi(r) \right|^{2} dr \\ &\leq C \int_{2^{j-1} \leq |r| \leq 2^{j+1}} \left\{ |\Phi(r)|^{2} + 2^{j} |\Phi(r)| \left| \frac{\partial}{\partial r} \Phi(r) \right| + 2^{2j} \left| \frac{\partial}{\partial r} \Phi(r) \right|^{2} \right\} dr \\ &\leq C \int_{2^{j-1} \leq |r| \leq 2^{j+1}} \left\{ |r|^{-2\epsilon} + 2^{j} |r|^{-1-2\epsilon} + 2^{2j} |r|^{-2-2\epsilon} \right\} dr \\ &\leq C 2^{(1-2\epsilon)j}. \end{split}$$

Then, by Plancherel's theorem,

$$\int_{\mathbf{R}} |\check{\Phi}_{j}(s)|^{2} ds = \int_{\mathbf{R}} |\Phi_{j}(r)|^{2} dr \leq C 2^{(1-2\epsilon)j}$$

and

$$\int_{\mathbf{B}} \left| 2^j s \, \check{\Phi}_j(s) \right|^2 \, ds = \int_{\mathbf{B}} \left| 2^j \, \frac{\partial}{\partial r} \Phi_j(r) \right|^2 \, dr \leq C \, 2^{(1-2\epsilon)j}.$$

These give

$$\int_{\mathbb{R}} 2^{-j} \left(1 + 2^{2j} s^2 \right) |\check{\Phi}_j(s)|^2 ds \le C 2^{-2\epsilon j}.$$

Applying the Cauchy-Schwartz inequality, we obtain

$$\int_{\mathbf{R}} |\check{\Phi}_{j}(s)| ds \leq \left\{ \int_{\mathbf{R}} 2^{-j} \left(1 + 2^{2j} s^{2} \right) |\check{\Phi}_{j}(s)|^{2} ds \right\}^{\frac{1}{2}} \left\{ \int_{\mathbf{R}} 2^{j} \left(1 + 2^{2j} s^{2} \right)^{-1} ds \right\}^{\frac{1}{2}} \\
\leq C 2^{-\epsilon j} \left\{ \int_{|s| \leq 2^{-j}} 2^{j} ds + \int_{2^{-j} \leq |s| \leq 1} ds + \int_{|s| \geq 1} 2^{-j} s^{-2} ds \right\}^{\frac{1}{2}} \\
\leq C 2^{-\epsilon j}.$$

Since $\check{\Phi} = \check{\Phi}_0 + \sum_{j=1}^{\infty} \check{\Phi}_j$, we therefore have

$$\| \check{\Phi} \|_{1} \le \| \check{\Phi}_{0} \|_{1} + \sum_{j=1}^{\infty} \| \check{\Phi}_{j} \|_{1} \le C(\epsilon) < \infty,$$

meaning that $\check{\Phi} \in L^1(\mathbf{R})$.

In general, the proof also applies to $\frac{\partial^k}{\partial r^k}\Phi(r)$, and so we have $s^k \check{\Phi}(s) \in L^1(\mathbf{R})$, for all $k = 0, 1, 2, \ldots$

We now come to the proof of Theorem 2.1.

Proof (of Theorem 2.1). For $r \in \mathbf{R}^+$, $\xi \in S^{n-1}$, we have

$$\widehat{\mu}(r\xi) = F(r,\xi) e^{-irp(\xi)\cdot\xi} + F(r,-\xi) e^{-irp(-\xi)\cdot\xi} + E(r,\xi),$$

with p, F, and E as prescribed. We assume here that $F(r, \pm \xi) = 0$, for $0 \le r < s < 1$, to have $\frac{\partial^k}{\partial r^k} F(r, \xi)|_{r=0} = 0$, for all $k = 0, 1, 2, \ldots$.

For $u \in \mathbf{R}, \ \xi \in S^{n-1}$, consider

$$\psi(u,\xi) = \frac{1}{2\pi} \int_0^\infty \widehat{\mu}(r\xi) \, r^{-1-iu} \, dr$$

$$= \frac{1}{2\pi} \int_0^\infty F(r,\xi) \, e^{-irp(\xi)\cdot\xi} \, r^{-1-iu} \, dr$$

$$+ \frac{1}{2\pi} \int_0^\infty F(r,-\xi) \, e^{-irp(-\xi)\cdot\xi} \, r^{-1-iu} \, dr$$

$$+ \frac{1}{2\pi} \int_0^\infty E(r,\xi) \, r^{-1-iu} \, dr$$

$$= \psi_1(u,\xi) + \psi_2(u,\xi) + \psi_3(u,\xi), \quad \text{say}.$$

Let us fix $\xi \in S^{n-1}$ hereafter. By Theorem 1.2, we have

$$|\psi_3(u,\xi)| \le C (1+|u|)^{-1-\delta}, \quad u \in \mathbf{R},$$

for some $\delta > 0$, assuming that $E(0, \xi) = 0$.

It then remains to tackle ψ_1 and ψ_2 . But since they are similar, it suffices to work with one of them, ψ_1 say. We put

$$\widehat{\mu}_1(r\xi) = F(r,\xi) e^{-irp(\xi)\cdot\xi}$$

and define $\widehat{\nu}$ on **R** by

$$\widehat{\nu}(r) = \begin{cases} \widehat{\mu}_1(r\xi) e^{irp(\xi)\cdot\xi} (1+r^2)^{\frac{1+\epsilon}{4}}, & \text{if } r \ge 0, \\ \widehat{\mu}_1((-r)(-\xi)) e^{irp(-\xi)\cdot\xi} (1+r^2)^{\frac{1+\epsilon}{4}}, & \text{if } r < 0, \end{cases}$$

for some $0 < \epsilon < \min(3, \alpha - \frac{1}{2})$. Thus

$$\widehat{\nu}(r) = \begin{cases} F(r,\xi) (1+r^2)^{\frac{1+\epsilon}{4}}, & \text{if } r \ge 0, \\ F(-r,-\xi) (1+r^2)^{\frac{1+\epsilon}{4}}, & \text{if } r < 0. \end{cases}$$

Writing

$$\widehat{\nu}(r) \ = \ \begin{cases} F(r,\xi) \, r^{\frac{1+\epsilon}{2}} \, (1+r^{-2})^{\frac{1+\epsilon}{4}}, & \text{if } r \ge 0, \\ F(-r,-\xi) \, (-r)^{\frac{1+\epsilon}{2}} \, (1+r^{-2})^{\frac{1+\epsilon}{4}}, & \text{if } r < 0, \end{cases}$$

and applying Leibnitz's formula, we obtain that for $k = 0, 1, 2, \ldots$

$$\left| \frac{\partial^k}{\partial r^k} \widehat{\nu}(r) \right| \le C, \quad |r| \le 1$$

and

$$\left| \frac{\partial^k}{\partial r^k} \widehat{\nu}(r) \right| \le C |r|^{-k - \frac{\epsilon}{2}}, \quad |r| > 1.$$

Hence, for all $k = 0, 1, 2, \ldots$, we have

$$\left| \frac{\partial^k}{\partial r^k} \widehat{\nu}(r) \right| \le C (1 + |r|)^{-k - \frac{\epsilon}{2}}, \quad r \in \mathbf{R}.$$

It follows from Proposition 2.4 that $\nu = (\widehat{\nu})^{\check{}} \in L^1(\mathbf{R})$ (which assures us that ν defines a measure on \mathbf{R}), and further $s^2 \nu(s) \in L^1(\mathbf{R})$. So we find that there exists a measure ν on \mathbf{R} which satisfies the hypothesis of Lemma 2.3. The proof is therefore complete. \square

Remark. The result extends to surface measures of class C^K for some finite K; K is sufficiently large so that the hypothesis

$$\left| \frac{\partial^k}{\partial r^k} F(r, \pm \xi) \right| \le C_k r^{-k-\alpha}, \quad r \in \mathbf{R}^+, \ \xi \in S^{n-1},$$

is satisfied for k = 0, 1, 2, 3 and 4.

REFERENCES

- [1] M. Cowling, S. Disney, G. Mauceri and D. Müller, *Damping oscillatory integrals*, Invent. Math. **101** (1990), 237-260.
- [2] M. Cowling and G. Mauceri, *On maximal functions*, Rend. Sem. Mat. Fis. Mil. **XLIX** (1979), 79-87.
- [3] M. Cowling and G. Mauceri, *Inequalities for some maximal functions. II*, Trans. Amer. Math. Soc. **296** (1986), 341-365.
- [4] G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. **54** (1930), 81-116.
- [5] L. Hörmander, Estimates for translation invariant operators in L^p -spaces, Acta Math. **104** (1960), 93-139.
- [6] J. Marcinkiewicz, Sur l'interpolation d'operations, C.R. Acad. des Sciences, Paris 208 (1939), 1272-1273.
- [7] J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. **32** (1939), 122-132.

- [8] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Series, no. 30, Princeton Univ. Press, Princeton, N.J., 1970.
- [9] E. M. Stein, Maximal functions: spherical means, Proc. Nat. Acad. Sci. USA 73 (1976), 2174-2175.
- [10] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Trans. Amer. Math. Soc. 84 (1978), 1239-1295.
- [11] E. C. Titchmarsh, The theory of functions, Oxford Univ. Press, London, 1939.
- [12] N. Wiener, The ergodic theorem, Duke Math. J. 5 (1939), 1-18.

SCHOOL OF MATHEMATICS, THE UNIVERSITY OF NEW SOUTH WALES, KENSINGTON, N.S.W. 2033, AUSTRALIA